На главную / Образование и воспитание / Жизнеописание Льва Семёновича Понтрягина, математика, составленное им самим. Рождения 1908 г., Москва

Жизнеописание Льва Семёновича Понтрягина, математика, составленное им самим. Рождения 1908 г., Москва

| Печать |



После университета

Закончив университет, я в течение двух лет проходил университетскую аспирантуру под руководством П. С. Александрова.

Это было время решительных преобразований. Старая система аспирантуры с многочисленными огромными экзаменами разрушилась, новая ещё не была заведена. Таким образом, в аспирантуре я просто занимался математикой, да ещё получал 175 рублей стипендии, что радикально меняло моё материальное положение.

Окончание аспирантуры за два года вовсе не означало, что я выполнил что-то досрочно или защитил диссертацию. Диссертаций тогда вовсе не было, просто начальство решило, что с меня хватит. И перевело меня в сотрудники Института математики при университете на зарплату 170 рублей. Так что я даже потерпел некоторый материальный ущерб.

Правда, уже после первого года аспирантуры я стал доцентом университета с зарплатой 47 рублей и читал лекции совместно с профессором О.Ю.Шмидтом. Лекции были посвящены абстрактной алгебре и теории групп. Читали мы их по очереди. Однако на каждой лекции присутствовали оба.

В мои обязанности входило утром в день лекции сообщить О. Ю. Шмидту о предстоящей лекции. Дома телефона у меня не было, моя мать ходила в аптеку и звонила Шмидту. До сих пор помню, какой страх я испытал перед своей первой лекцией. Когда-то очень давно я слушал впервые Андроникова, он как раз рассказывал о своём страхе перед первым выступлением на эстраде. Мои переживания перед первой лекцией были очень похожи на его переживания перед первым выступлением. Разница заключалась только в том, что, когда я заговорил перед аудиторией, мой страх мгновенно исчез, и всё внимание было сосредоточено на том, что я говорю.

В течение многих лет я испытывал некоторую тревогу, похожую на страх, перед каждой своей лекцией. И всегда страх мгновенно исчезал, как только я приступал к лекции. Позже эти страхи прекратились. Даже лекции на английском языке я воспринимал без тревоги. Помню, как спокойно я шёл на свой пленарный доклад на Международном конгрессе в Ницце в 1970 году. Я спокойно делал его на английском языке.

Различного рода страхи, тревоги, связанные с профессиональной работой, всегда преследовали и продолжают преследовать меня теперь. Каждое новое начинание вызывает тревогу. Неясно, справлюсь ли я с ним. Незаконченная научная работа вызывает страх, что я вообще не сумею её закончить и несколько лет тяжёлого труда пропадут даром. Законченная научная работа вызывает страх тем, что в ней может обнаружиться ошибка.

Все эти страхи перед возможной неудачей составляют тяжёлую эмоциональную сторону профессиональной работы. И в то же время это является важнейшим стимулом для хорошего выполнения работы. Страх перед неудачей вынуждает меня самым тщательным образом подготавливать всякое мероприятие, а тщательная подготовка приводит к тому, что работа выполняется хорошо, что приносит огромное моральное удовлетворение. Только хорошо выполненная работа доставляет радость! Выполненная небрежно, она вызывает отвращение и постепенно вырабатывает в человеке аморальное отношение к труду.

Я склонен думать, что добросовестное отношение к труду является прирождённым свойством каждого человека, а чтобы развить в нём аморальное отношение к труду и склонность к халтуре, нужно приложить большие усилия. Для этого нужно создать особенно неблагоприятные условия работы. Эти неблагоприятные условия могут выражаться, например, в противоестественно низкой оплате труда или в том, что плоды труда используются столь нерационально, что практически идут впустую. И то, и другое у нас имеется в достаточной мере.

* * *

Окончив университет в 1929 году и освободившись тем самым от экзаменов, так как в аспирантуре их не было, я все свои силы направил на научную работу, которую сразу же повёл с очень большим успехом. Каждый год я публиковал по две-три работы, причём по меньшей мере одна из них была действительно замечательной. В первые годы тематика этих работ была тесно связана с моими студенческими работами или вытекала из них. При этом иногда, исходя из старых задач, я приходил к совершенно новым.

Стремясь доказать теорему двойственности Александера для произвольного компактного подмножества евклидового пространства, я пришёл к необходимости рассмотрения группы характеров произвольной коммутативной счётной группы, т. е. столкнулся с T-теорией топологических групп, с топологической алгеброй. В дальнейшем это привело меня к построению общей теории топологических групп.

Я пришёл к топологической алгебре, стремясь доказать теорему двойственности Александера для произвольного компактного подмножества евклидового пространства. Не знаю, как пришёл к ней А. Н. Колмогоров, но он сформулировал мне следующее общее положение: «Математический объект, в котором одновременно определены алгебраические и топологические операции, причём алгебраические операции непрерывны в заданной в нём топологии, должен быть сравнительно конкретным». На этом пути Колмогоров пытался построить аксиоматику пространств постоянной кривизны, т. е. единую аксиоматику для пространства Евклида, Лобачевского и Римана.

Передо мной он поставил следующую конкретную задачу: доказать, что всякое связное локально компактное топологическое тело является либо телом действительных чисел, либо телом комплексных чисел, либо телом кватернионов. Для коммутативных тел, т. е. полей, я решил её очень быстро — за неделю или две. И сообщил об этом П. С. Александрову. И вот мы трое собрались в маленькой комнате Павла Сергеевича в Старопименовском переулке. Колмогоров с оттенком иронии сказал: «Ну что же, Лев Семёнович, я слышал, вы решили мою задачу? — Расскажите!» Я начал рассказ, и первое же моё утверждение Колмогоров объявил неверным. Но я в нескольких словах объяснил ему его ошибку. Колмогоров сказал: «Да, да, вы правы! По-видимому, задача, которую я вам поставил, не так трудна, как я думал».

Потом я решил задачу и для случая некоммутативных тел, но это заняло у меня уже около года. Колмогоров тщательно отредактировал эту мою работу и устроил в ней 33 леммы. В таком виде она и была опубликована. Я и сейчас считаю этот мой результат в числе лучших моих достижений *   См. работу «О непрерывных алгебраических телах». — В кн.: Понтрягин Л. С. Избранные научные труды. Т. I. — М.: Наука, 1988. .

С Колмогоровым я познакомился летом 1929 года в Гаграх, где мы с матерью провели целых два месяца. Я часто встречался там с Александровым и Колмогоровым, Во всяком случае, мы очень часто купались вместе. Александров и Колмогоров приехали в Гагры не одновременно. Сперва приехал Александров и стал ждать Колмогорова, который шёл через перевал, притом совершенно один, что очень беспокоило Александрова и меня. Беспокойство это переросло в мучительную тревогу, когда Колмогоров не явился к назначенному сроку.

Александров за несколько лет до этого потерял своего друга, Урысона, при трагических обстоятельствах. Урысон утонул в Атлантическом океане во время сильного прибоя на глазах у Александрова. В Гаграх Александрову чудилась гибель только что обретённого нового друга. Колмогоров опоздал на несколько дней. Оказалось, что при переходе через перевал он уронил сумку с документами в пропасть и не мог её достать. Когда он ночью спустился в Сочи, то женщина-милиционер задержала его как подозрительную личность и отправила в дом предварительного заключения, где он просидел четыре или пять дней, тщетно добиваясь, чтобы его выпустили или навели о нём справки. Наконец это удалось сделать, и тогда ему была возвращена свобода.

* * *

Топологическая алгебра, точнее, теория топологических или непрерывных групп была предметом моей научной и педагогической деятельности в течение нескольких лет. Большой успех в этой области был достигнут мною на основе только что появившейся тогда замечательной работы венгерского математика Хаара. В ней Хаар построил на локально компактной топологической группе инвариантную меру. Это позволяло строить и решать на группе интегральные уравнения, так что можно было применить данную ранее Германом Вейлем теорию представлений компактных групп Ли. Работа Хаара была опубликована в американском журнале «Annals of Mathematics», где членом редакции был фон Нейман. Последний сразу же воспользовался замечательным результатом Хаара, решив при помощи него пятую проблему Гильберта для компактных групп. Я, конечно, мог использовать результат Хаара только уже после Неймана. Для компактных групп я получил результат несколько более сильный, чем у Неймана, но это уже не было решением проблемы Гильберта, так как она была решена Нейманом. Кроме того, я изучил локально компактные коммутативные топологические группы. Моя работа о локально компактных коммутативных группах была послана в тот же журнал. Лефшец, который в то время находился в Москве, процитировал мне письмо Неймана, в котором писал, что от Понтрягина получена действительно замечательная работа * Подробный обзор решения 5-й проблемы Гильберта см. в книге: «Проблемы Гильберта» (М.: Наука, 1969) и в комментариях к книге: Д. Гильберт. Избранные труды. Т. II. — М.: Факториал, 1998. .

По теории непрерывных групп, в частности групп Ли, я прочёл несколько спецкурсов и провёл несколько семинаров. Получил важные собственные результаты. И мне захотелось написать книгу. К 1935 году я уже был готов к написанию большой монографии «Непрерывные группы». В неё вошли: общая теория топологических групп, мои собственные результаты, а также очень хорошее только что полученное мною изложение теории групп Ли. Я писал эту книгу два года и в 1937 году сдал в печать. На этом я научился писать математические работы. В 40-м году за эту монографию мне была присуждена Сталинская премия 2-й степени. Книга очень скоро была переведена в США на английский язык и сильно увеличила мою международную известность * Книга «Непрерывные группы», написанная в 1937 г. до сих пор является основополагающей монографией по топологической алгебре. Она выдержала четыре издания у нас в стране (в 1938, 1954, 1973, 1984 и 1988 гг.), несколько изданий на английском языке (в 1939, 1946 гг. — Princeton University Press, в 1966 г. — Gordon and Breach, 1978 — Mir), переведена на немецкий, польский и китайский языки. .

Другим ответвлением от моих студенческих работ по теореме двойственности Александера была попытка локализировать эту теорему. Это было связано с новой тематикой П. С. Александрова. Он стал применять комбинаторную топологию для изучения компактных топологических пространств, в частности переносить на них теорию гомологий.

Он старался определить при помощи гомологий размерность множества, ввёл понятие «по модулю два» и пытался доказать, что обычная размерность совпадает с гомологической размерностью по модулю два. Я сразу увидел, что размерность можно определить не только по модулю два, но и по любому другому модулю. Так что получается счётное число различных гомологических размерностей.

Доказательство того, что размерности эти различны, было моим достижением. Пользуясь этими соображениями, я построил ставший знаменитым пример двух компактных топологических множеств размерности два, топологическое произведение которых имеет размерность три.

Результат был опубликован в журнале «Comptes Rendus» * См. работу «Об одной фундаментальной гипотезе в теории размерности» в кн.: Понтрягин Л. С. Избранные научные труды. Т. I. — М.: Наука, 1988. . Эта заметка попала в руки С. А. Лефшеца и оказалась противоречащим примером к уже построенной Лефшецом и публикуемой им теории гомологической разности. Ему пришлось срочно выкидывать из набора целую главу своей книги.

Лефшец сразу же заметил меня. Александров рассказал мне позже, что, когда после этого он встретил Лефшеца в Америке, тот спрашивал его обо мне, спрашивал, не еврей ли я, и был несколько разочарован, узнав, что я русский. Однако Лефшец отнёсся ко мне очень хорошо.

В начале 30-х годов Лефшец впервые приехал в Советский Союз, он почти сразу же пришёл ко мне с Л. Г. Шнирельманом. Я очень хорошо помню эту встречу. Она потрясла меня: такой выдающийся математик, как Лефшец, пришёл ко мне — аспиранту — домой. В этот его приезд в Москву мы много проводили вместе с ним времени, ходили по Москве, разговаривая о разных вещах, о математике, о политике, о многом другом.

Свою работу, в которой был дан пример двух двумерных множеств с трёхмерным топологическим произведением, я собирался подарить одной студентке, в которую был безответно влюблён. Помню, как я пришёл к Павлу Сергеевичу в профессорскую и рассказал ему о своём горе и своём замечательном достижении. Александров сразу же решительно запретил мне делать такой роскошный подарок студентке, которая, кстати, ему не нравилась! А моим научным достижением был так впечатлён, что сказал:

— Через десять лет Вас выберут академиком!

Его прогноз не оправдался. Через 10 лет меня выбрали не академиком, а только членкором, хотя был выдвинут, действительно, в академики. Что касается подарка, то я его всё же сделал. Но более скромный. Соответствующая работа, по настоянию Александрова, была опубликована как совместная * По-видимому, имеется в виду работа Pontriagin L., Tolstowa G. Beweis des Mengerschen Einbettungssatzes. — Math. Ann., 1931, Bd. 105, H. 5, S. 734–745.

На топологическом семинаре: Л. С. Понтрягин, П. С. Александров, В. А. Ефремович

На топологическом семинаре: Л. С. Понтрягин, П. С. Александров, В. А. Ефремович

Александров пытался дать гомологическую характеристику обычной размерности, но это была очень трудная задача. То же самое пытался сделать и я. Но я пытался сделать это несколько иначе, чем Александров. Именно, я пытался охарактеризовать размерность, помещая множество в евклидово пространство и стремясь доказать, что множество размерности r, лежащее в n-мерном евклидовом пространстве, хотя бы в одной точке составляет локальное препятствие для гомологии размерности rn–1. Первоначально эту задачу решили мы совместно с Франклем для двумерных множеств в трёхмерном евклидовом пространстве, пользуясь одной теоремой об узлах * См. работу Pontriagin L., Frankl F. Ein Knotensatz mit Anwendung auf die Dimensionstheorie. — Math. Ann., 1930, Bd. 102, H. 5, S. 785–789. . А затем Франкль решил её очень остроумно для множеств размерности n–1 в евклидовом пространстве размерности n. Именно, он доказал, что такое множество локально разбивает евклидово пространство. Однако решение общей задачи для r-мерного множества в n-мерном пространстве нам с Александровым очень долго не удавалось получить. Решил её не я, а П. С. Александров.

Я же, пойдя по ложному пути, пришёл к мысли, что решение идёт через гомотопическую классификацию отображений (n+k)-мерной сферы на n-мерную, чем и занялся специально уже много позже. Проблема эта представляла сама по себе, конечно, самостоятельный интерес, и ею занимались многие. Случай k=0 был исследован Хопфом, случай k=1, n=2 был также решён Хопфом. Случай, когда k=1, а n — произвольно, решил я. Также я решил задачу для случая k=2, n — произвольно * К задаче о вычислении гомотопических групп сфер Л. С. Понтрягин неоднократно возвращался в период 1936–1955 гг. Созданная им теория оснащённых многообразий оказала большое влияние на развитие топологии. См., например, книгу «В поисках утраченной топологии» (М.: Мир, 1989). См. также книгу «Гладкие многообразия и их применения в теории гомотопий» (М.: Наука, 1985) и статью «О моих работах по топологии и топологической алгебре». . Но для произвольного k задача оказалась чрезвычайно трудной. В попытках решить её я построил теорию характеристических циклов гладких многообразий уже перед самой войной *   Первая работа по теории характеристических классов была опубликована в 1942 г. («Характеристические циклы многообразий», ДАН СССР, 1942, т. 35, № 2, с. 35–39.) Дальнейшие работы см. в библиографии работ Л. С. Понтрягина. См. также «О моих работах по топологии и топологической алгебре». О характеристических классах Понтрягина и их применениях в топологии см., например, книгу Дж. Милнора, Дж. Сташефа «Характеристические классы» (М.: Мир, 1979) и обзор С. П. Новикова «Топология» (в кн.: Итоги науки и техники. Современные проблемы математики. Фундаментальные направления. Т. 12. — М.: ВИНИТИ, 1986). .

Построенные мною характеристические циклы приобрели широкую известность и получили название классов Понтрягина. Они нашли многочисленные применения, но одну из важнейших проблем, связанных с ними, долгое время никому не удавалось решить. Именно: хотелось доказать, что классы Понтрягина являются инвариантами самого топологического, а не только дифференцируемого многообразия. Я эту задачу пытался решить, но не решил. Много позже её решил положительно, но частично, Сергей Петрович Новиков.

Оказалось, что для характеристических классов конечного порядка топологической инвариантности нет, а она имеет место лишь для характеристических классов по полю рациональных чисел. Всё это было доказано С. Новиковым.

Так из моих студенческих работ очень косвенным образом выросло новое направление, именно — теория гомотопий.

Третьим ответвлением от моих студенческих работ стало вариационное исчисление «в целом», которым занимались тогда Люстерник и Шнирельман. Они ввели важное для вариационного исчисления понятие «категория многообразия». Данное ими определение категории отрицательно. Это значит, что эффективно можно установить, что категория не больше некоторого числа k, но нет никакой возможности эффективно установить, что она не меньше числа k. Поэтому вычисление её очень трудно. Мои студенческие результаты дали возможность оценивать категорию многообразия снизу при помощи пересечений циклов многообразия * См. работу «Об алгебраическом содержании топологических теорем двойственности» (в кн.: Понтрягин Л. С. Избранные научные труды. Т. I. — М.: Haука, 1988) и её обсуждение в статье «О моих работах по топологии и топологической алгебре» .

Так у меня возникли научные контакты с Л. А. Люстерником и Л. Г. Шнирельманом. Оба они в течение многих лет были моими друзьями.

Очень хорошо помню, как я впервые встретился со Шнирельманом. Я пришёл на топологический кружок — т. е. главный топологический семинар — с опозданием и услышал, что какая-то женщина делает доклад. Стал его внимательно слушать. Когда доклад кончился, оказалось, что это была не женщина, а Лев Генрихович Шнирельман, обладающий совершенно женским голосом. Мы со Шнирельманом быстро сблизились и подружились. Часто бывали друг у друга. Он жил тогда в дрянной обшарпанной комнатке, а я — в своей старой плохонькой квартире. Шнирельман много рассказывал мне о математиках более старшего, чем я, поколения: о Лузине, Лихтенбауме и других * По-видимому в это время была опубликована «Декларация инициативной группы по реорганизации математического общества», подписанная Люстерником, Шнирельманом, Гельфондом, Понтрягиным и Некрасовым. . С ним мы читали стихи русских поэтов. Он привлёк моё внимание к таким замечательным литературным произведениям, как «Валерик» Лермонтова.

Шнирельман был незаурядный, талантливый человек с большими странностями. Было в нём что-то неполноценное, какой-то психический сдвиг. Я помню, как трудно было ему уйти от меня из гостей: он останавливался в прихожей и не мог двинуться дальше. Тогда говорили, он не имел никаких успехов у женщин и это сильно угнетало его. Кроме того, с ним произошло большое несчастье в смысле научного творчества. Он сделал выдающееся научное открытие, дав первое приближение к решению теоретико-числовой проблемы Гольдбаха * Проблема Гольдбаха формулируется следующим образом: всякое ли целое число, большее 6, можно представить в виде суммы не более трёх простых чисел? Л. Эйлер показал, что для решения этой проблемы достаточно доказать, что каждое чётное число есть сумма двух простых. В 1930 г. Л. Г. Шнирельман доказал, что всякое целое число, большее 1, есть сумма не более чем 800 000 простых чисел. . Этот успех грубо исказил его отношение к математической проблематике.

Ему принадлежала следующая формулировка: «Я не хочу заниматься промыванием золота, я хочу находить только самородки». Ясно, однако, что найти самородок можно, только промывая золото и подбираясь к самородку постепенно.

Он отказался от этого пути и утратил творческую инициативу. Когда это произошло, он впал в полное уныние и говорил часто мне: «Имеет ли право жить человек, который уже ничего не делает, а в прошлом сделал что-то замечательное?» Я утешал его как мог. Кончилось это трагически: Шнирельман преднамеренно отравился. Я помню, как Люстерник встретил меня на вокзале, когда мы с матерью возвращались с юга, и сообщил о происшедшем несчастье.

В то время Шнирельман жил уже в хорошей квартире вместе с матерью. Она видела, что с ним происходит что-то неблагополучное, и следила за ним. Однажды ночью она была чем-то очень встревожена и хотела даже посмотреть, что с сыном. Но, подумав, что он спит, не решилась пойти к нему. Утром обнаружила, что он закрылся в кухне, заложил все щели и пустил газ. Когда она обнаружила его, он уже был безнадежно мёртв, хотя ещё и не остыл... Так трагически кончилась жизнь Льва Генриховича Шнирельмана.

* * *

Лето 32-го года мы с матерью проводили в доме отдыха в Болшево, под Москвой. Там я познакомился с тремя людьми, знакомство с которыми продолжалось много лет. Это были люди, ставшие впоследствии известными учёными, — Л.Д.Ландау и Кибель. Ещё одна молодая девушка из Ленинграда, в которую я опять-таки влюбился. Это чувство и положило начало моим частым поездкам в Ленинград. Брак из этой любви не вышел, я не пользовался взаимностью, но дружба с этой женщиной сохранилась на долгие годы. Много лет я дружил с Ландау и Кибелем, до самой их смерти.

Ландау погиб трагически: в январе 1962 года он попал в автомобильную катастрофу, в результате которой получил тяжёлое увечье. И получил, в частности, перелом основания черепа, который считался тогда смертельной травмой.

Усилиями медиков всего мира жизнь Ландау была продолжена ещё на пять мучительных для него лет. Этот успех медицины, столь трагический для Ландау, ещё увеличил его славу. Именно после этого он получил Нобелевскую премию.

Уже с самого начала мы с Ландау очень понравились друг другу и подружились с ним. Он пытался рассказать мне что-то из теоретической физики и привлечь меня к ней, но безуспешно. Зато мне очень нравились его выдумки. Например, ему принадлежала классификация женщин на пять классов: от первого высшего до пятого низшего. Точно так же классифицировались им и учёные. Разрабатывались признаки этой классификации. Я их когда-то знал. Для таких молодых людей, какими были мы с Ландау в 32-м году (нам было тогда около 24-х лет каждому), такой трёп, конечно, очень занимателен и естественен. Кажется, Ландау продолжал увлекаться им до самого конца жизни.

Выдающийся алгебраический геометр и тополог Соломон Александрович Лефшец впервые появился у меня на квартире, по-видимому, в 31-м году. Привёл его ко мне Шнирельман. К этому времени Лефшец уже знал обо мне по моей работе по теории размерности. Я знал его по его замечательной работе «Пересечение и преобразование многообразий» 2, которая была изучена нами на семинаре Александрова и сыграла в моей научной деятельности важную роль.

Лефшец родился в Москве в точности за 24 года до меня. Наши дни рождения совпадают — 3 сентября. Но через несколько дней после рождения он был увезён своими родителями во Францию, где получил образование, в частности выучил русский язык, как иностранный, в средней школе.

Во Франции он стал инженером и переехал в Америку для работы. Там с ним случилось несчастье: на работе ему оторвало обе кисти рук. Он потерял возможность работать инженером.

После этого он уехал в провинцию и стал заниматься математикой. Лефшец сразу же оценил меня как математика и всю свою жизнь доброжелательно относился ко мне. В 58-м году на конгрессе в Эдинбурге он председательствовал на моём пленарном докладе и открыл заседание следующими словами: «Позвольте представить вам моего друга, члена Академии наук Советского Союза, Понтрягина». Сперва он сказал это по-русски, а потом по-английски.

В начале нашего знакомства он пригласил нас с мамой в США на один год. Кажется, в 32-м году я получил уже это приглашение, но из него ничего не вышло. Меня не пустили. Очень лёгкие до этого поездки за границу советских математиков стали к этому времени уже труднее.

К отказу в поездке мне, по-видимому, приложили руку моя приятельница по университету студентка Виктория Рабинович и наша преподавательница философии Софья Александровна Яновская. Во всяком случае, однажды Яновская сказала мне:

— Лев Семёнович, не согласились бы Вы поехать в Америку с Витей Рабинович, а не с матерью?

Я ответил Яновской резким отказом, заявив: «В какое положение Вы хотите поставить меня? Кто мне Витя Рабинович? Она же мне не жена».

Такая совместная поездка в Америку на год с Витей Рабинович могла бы кончиться браком с ней, к чему я вовсе не стремился. Яновская в то время была влиятельным партийным деятелем, и я могу себе представить, что от неё многое зависело, в частности, если она предлагала мне поехать с Витей Рабинович, то она, вероятно, имела основания думать, что может организовать эту поездку. Но я на это не согласился.

Так намечавшаяся на 33-й год поездка в Соединённые Штаты на год не состоялась.

Впервые я поехал за границу через 25 лет — в 1958 году на конгресс в Эдинбурге. Я был приглашён как пленарный докладчик по топологии. Так как я уже к тому времени круто изменил тематику и стал специалистом по теории управления, то я предложил свой пленарный доклад по оптимальному управлению, что и было принято оргкомитетом Конгресса.

В 30-е годы Лефшец несколько раз приезжал в Москву, и всякий раз мы встречались с ним очень дружественно. Впервые после этого мы встретились с ним в Эдинбурге. Затем в 1964 году я впервые поехал в Америку и там был очень тепло встречен Лефшецем и другими американскими математиками.

Готовясь к поездке в Америку в 1932 году, я в течение девяти месяцев энергично изучал английский язык, занимаясь только этим. Приобретённые тогда мною знания английского языка были активными и пригодились мне при моих более поздних поездках за границу. Впервые же я выступил с докладом на английском языке в Москве, кажется, в 34-м году на Международной топологической конференции.


 


Страница 7 из 28 Все страницы

< Предыдущая Следующая >
 

Вы можете прокомментировать эту статью.


наверх^