Адольф Френкель. Жизнь Георга Кантора |
| Печать | |
СОДЕРЖАНИЕ
2. Период наивысшей творческой активности (1871−1884) С только что упомянутой работой [5] жизнь Кантора начинает выходить за рамки нормального развития талантливого ученого, в которые она вмещалась до того. На второй период, примерно с 1871 по 1884 год, приходится величайшее напряжение сил гениального исследователя, увенчавшееся построением теории множеств. 1872−74 годы принесли с собой два значительных события в личной жизни Кантора. Во время одной из поездок в Швейцарию, нередких в его молодости, он в 1872 г. совершенно случайно знакомится в Герсау с Дедекиндом. Это знакомство привело, наряду с частыми личными встречами, впоследствии происходившими обычно в Гарцбурге, также к переписке, от которой сохранилось 38 писем за годы 1873−79 и 1899. Хотя математическое содержание этой переписки ограничено, они весьма интересны как отражение способа работы и настроения Кантора в то время, а равным образом противоположности характеров этих людей, связанных продолжительной дружбой и высоко ценивших друг друга. Пользуясь терминами Оствальда, можно назвать являющегося в этих письмах Кантopa «романтиком», в противоположность «классику» Дедекинду. Это различие проявляется также в темпе писем Кантора, которые в периоды научной бури и натиска буквально перегоняют друг друга, в то время как ответы Дедекинда отличаются неизменной пунктуальностью. Следует отметить также весьма значительную в начале переписки разницу в возрасте (Дедекинд был на 14 лет старше). В целом, Кантор играет в этой переписке роль спрашивающего и берущего. Уже в одном из первых писем он выражает свою потребность обсуждать с Дедекиндом научные вопросы и ближе познакомиться с ним лично; и в дальнейшем мы постоянно встречаем почтительную благодарность за то, что дает ему это знакомство, а также за «вдохновляющее и чрезвычайно поучительное воздействие» на него «классических трудов» Дедекинда (письмо от 31 августа 1899 г.). Впрочем, глубокое влияние Дедекинда, с его абстрактным, предпочтительно аналитическим подходом, стремящимся к завершенной систематике, еще сильнее сказывается косвенным образом − в построении позднейших публикаций Кантopa по теории множеств, сравнительно с конструктивным стилем молодого Кантора, продвигавшегося вперед отдельными бросками. Перемена эта во многом соответствует весьма выраженной противоположности тенденций в современных исследованиях по основаниям математики. В то же время Кантор познакомился со своей будущей супругой Валли Гутман. В 1872 г. он стал экстраординарным профессором в Галле, весной 1874 г. состоялась помолвка, а летом свадьба. Во время свадебного путешествия молодожены встретились в Интерлакене с Дедекиндом. У Кантора было четыре дочери и два сына; никто из детей не проявил особой математической одаренности. Семидесятые года принесли Кантору и различные внешние успехи. Уже в 1869 г. он стал действительным членом Общества Естествоиспытателей в Галле; особенно же следует отметить избрание в члены-корреспонденты Геттингенского Научного Общества. По-видимому, ни одна другая немецкая академия и ни один университет, кроме Галле, вообще не почтили публично его заслуги. Далее, в 1878 г. он отклонил приглашение в Мюнстерскую Академию, а в 1879 г. был назначен ординарным профессором в Галле. Опубликованная в 1874 г. работа [10] представляет собой, наряду со средней частью статьи [5], публикацию Кантора, открывающую теорию множеств; в ней делается решительный шаг к строгому разграничению трансфинитного, особенно в отношении мощности. В наивном понятии «бесконечного» исчезали все различия, и сам Кантор вначале предполагал еще континуум счетным; в этой же статье за теоремой о счетности множества алгебраических чисел следует доказательство, что множество всех действительных чисел уже несчетно. Именно, для каждой последовательности действительных чисел Кантор строит с помощью принципа вложенных отрезков не принадлежащее ей число. Из сопоставления обоих результатов вытекает существование бесконечного множества трансцендентных чисел в любом интервале. Естественно было бы искать еще более высокие трансфинитные мощности, перейдя от одномерного континуума к многомерным. Как показывает корреспонденция Кантора с Дедекиндом, эта мысль занимала исследователя уже летом 1874 г. Насколько нужен был новый подход, чтобы вообще усмотреть здесь какую-либо проблему, видно из письма Кантора: он рассказывает, как один его друг в Берлине объявил идею об отобразимости линейного континуума на плоский «заведомо абсурдной, поскольку само собой разумеется, что две независимых переменных не сводятся к одной»; подобную же отповедь получил он позже при посещении Геттингена по случаю юбилея Гаусса в 1877 г. В письме от 20 июня 1877 г. он сообщает Дедекинду, после многолетних усилий, свою попытку построить отображение одномерного континуума на многомерный, и просит друга проверить доказательство; результат оказался для него самого в высшей степени неожиданным : “je le vois, mais je ne le crois pas” («вижу, но не верю») и, как он думал, колеблющим понятие размеренность, т. е. возможность охарактеризовать размерность числом независимых координат. В ответе Дедекинда указывается пробел в доказательстве (позже устраненный с помощью несложного приема Юлиусом Кенигом); это побудило Кантора перейти от первоначально использованных им разложений в десятичные дроби к представлениям цепными дробями. Далее, Дедекинд, защищая понятие размерности, подчеркивает значение требования, чтобы соответствие было непрерывным. По существу, усовершенствованное доказательство, сообщенное затем в письме Дедекинду, и содержится в работе [11], где устанавливается независимость мощности континуума от его размерности. В этой работе, между прочим, вводится уже понятие эквивалентности, понятие мощности и высказывается гипотеза континуума. Здесь содержится также, без доказательства, утверждение о сравнимости мощностей; ясно, что в то время (и еще долго впоследствии) Кантор считал это свойство самоочевидным. Опубликование этой работы в «Журнале Крелля» не обошлось без трудностей; она пролежала в редакции, после поступления 12 июля 1877 г., дольше обычного тогда срока и гораздо дольше, чем это допускало нетерпение Кантора, хотя за нее и вступился Вейерштрасс. В ноябре автор горько жаловался Дедекинду, что печатание статьи, вопреки заверениям редакции, «совершенно непостижимым для него образом» затягивается и откладывается в пользу работ, поступивших позднее; вероятно, причина заключалась в парадоксальности ее результата для того времени. К счастью, Дедекинду удалось, ссылаясь на собственный опыт, отговорить друга от опрометчивого намерения забрать рукопись и напечатать ее в виде отдельного сочинения; вскоре трудности в редакции рассеялись, и статья вышла из печати. Это была, однако, последняя публикация Кантора в «Журнале Крелля»; если даже допустить, что Кантор придал слишком серьезное значение задержке опубликования, причиной ее было уже, по-видимому, отрицательное отношение Кронеккера к идеям своего ученика, из которого впоследствии и развился кризис 1884 года. В то время как все эти обстоятельства тяжело удручали Кантора, назначение его ординарным профессором в Галле удовлетворило его лишь в ограниченной степени, потому что он стремился к другой должности и к более широкому кругу действия. Уже в 1874 г. он сознается Дедекинду: «Во время каникул я никогда не мог здесь долго выдержать, потому что единственное, что меня в течение пяти лет, некоторым образом, привязывает к Галле − это однажды избранная университетская профессия». Он предполагал, что отсутствие приглашений из других мест объясняется критической оценкой его работ влиятельными коллегами; при том почти бесспорном авторитете, которым пользовался тогда Кронеккер, это кажется вполне оправданным. Так, в 1883 г. Кантор, подавая министру прошение о месте в Берлине, не только не рассчитывал на немедленный успех, но заранее предвидел препятствия со стороны Шварца и Кронеккера; прошение не имело успеха, вызвав сильное противодействие Кронеккера. Поразительное, почти не известное замечание Кантона, по-видимому, доказывает, что уже в начале семидесятых годов он ясно понимал значение зарождавшихся у него идей, а также сопротивление, которое они должны вызвать; в то время исследования о тригонометрических рядах только что привели его к актуальной бесконечности, а первая его работа, посвященная теории множеств в узком смысле [10], еще не была опубликована. Намереваясь сделать доклад в Обществе Естествоиспытателей города Галле для которого, естественно, следовало выбрать общедоступный предмет, он остановился на теории вероятностей, которой занимался уже в течение нескольких лет. И вот, в докладе, состоявшемся б декабря 1873 г., он замечает по поводу француза де Мере, оспаривавшего авторитет Паскаля в одном вопросе теории вероятностей: «Как я полагаю, шевалье де Mepe может послужить предостерегающим примером всем противникам точного исследования, какие встречаются во все времена и повсюду; ибо с ними также может приключиться, что именно в том месте, где они пытаются нанести науке смертельные раны, вскоре расцветет перед их взором новая ветвь, возможно, плодотворнее прежних − как теория вероятностей перед взором шевалье де Мере». Отметим еще, что в более поздних письмах к Миттаг-Лефлеру Кантор постоянно называет Кронеккера псевдонимом «г-н фон Мере». В противоположность Кронеккеру, Вейерштрасс уже тогда проявил полное понимание идей своего прежнего ученика. Он заинтересовался уже докладом в семинаре, где тот, еще будучи студентом, располагал рациональные числа в последовательность; точно так же, после недолгой первоначальной озадаченности, он очень быстро оценил сообщенное ему в 1873 году понятие счётности в его общем виде, и сразу воспользовался счётностью алгебраических чисел в одном вопросе, касающемся действительных функций * См. письмо Вейерштрасса П. Дю Буа-Реймону от 15 декабря 1874 г. ( Acta. Mathematica, 39, стр. 206, 1924) . Далее Кантор по предложению Вейерштрасса впервые применил понятие счетности к анализу (в работе [8]), и обратно, канторова теория объема в [13] побудила Вейерштрасса заняться теорией действительных функций * См. письмо Вейерштрасса Софье Ковалевской от 16 мая 1885 г. ( ibid. , стр.195 и далее) . С работой [11] тесно связана, и в некотором смысле противостоит ей, работа [12], в которой предпринята попытка выяснить значение непрерывности для понятия размерности; идея эта, по существу, возникла из переписки с Дедекиндом. Как известно, теорема об инвариантности размерности, о которой идет речь в этом (недостаточном) доказательстве, была строго обоснована лишь Л. Э. И. Брауэром много десятилетий спустя. Начало восьмидесятых годов было временем интенсивнейшего творчества Кантора, могучего, переливающегося через все видимые границы развертывания его гениальных идей; но тогда же произошел тяжелый кризис в его жизни, не покинувший его до конца. Работа [13], опубликованная в шести частях в 1879−84 годах, принадлежит к тем историческим явлениям, когда совершенно новая мысль, открывающая целую эпоху и полностью противоречащая воззрениям прошлого и настоящего, пробивается и кристаллизуется со все возрастающей отчетливостью, лишь постепенно осознаваемая в своей смелости и новизне самим ее творцом. В 1870 году ему впервые является идея трансфинитных чисел; в 1873 году он постигает значение счетности и зияющую пропасть, отделяющую ее от континуума; лишь теперь он решается предложить современникам свои идеи во всей их широте, отдавая себе полный отчет в их возможном воздействии: так, он говорит о «предметах, примыкающих к теории множеств или теснейшим образом с нею связанных, как, например, современная теория функций и, с другой стороны, логика и теория познания». Во всяком случае, часть пятая этой работы [13] , вышедшая также отдельно с предисловием * Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-phlosophischer Versuch in der Lehre des Unendlichen (Основания общей теории многообразий. Математико-философский опыт учения о бесконечном), Лейпциг, 1883 г. , делает ее важным событием не только в математике и философии, но и вообще в истории науки и человеческого мышления; без сомнения, она еще окажется поучительной и ценной с самых разнообразных точек зрения, пока нам недоступных. Редакция “Mathematische Annalen” снискала высокую заслугу, открыв страницы своего журнала идеям, решительно неприемлемым для математического и философского мира того времени, которым еще предстояло более десятилетия ожесточенно бороться за свое признание. В серии статей [I3] излагается, главным образом, теория точечных множеств * Еще одна, седьмая статья, предусмотренная Кантором, не была осуществлена (что можно объяснить уже его болезнью) ; вместе с дополняющими ее работами [14]–[l6] она содержит, прежде всего, теорию производных множеств, исследование строения точечных множеств и теорию объема, а также теорию порядковых чисел, в особенности второго класса. Следует упомянуть еще некоторые отдельные места, непосредственно не относящиеся к этим основным темам, но имеющие общее значение: сохранение свойства связности Rn, когда из него удаляется счетное всюду плотное множество, после чего в столь разрывном пространстве оказывается возможным непрерывное движение; признание автора в конце части пятой, что успешное продолжение его исследований невозможно без расширения числового ряда в трансфинитную область, и его убеждение в том, что это расширение, как бы оно ни казалось сначала спорным математическому миру, в конце концов проложит себе путь; осуждение бесконечно малых величин, а также финитистской точки зрения Кронеккера, и дискуссия с финитистски ориентированными философами древности и средних веков до Спинозы, Лейбница и Канта; историко-критический и логико-математический анализ сущности континуума; общий метод вложенных интервалов. В эту последовательность статей вклинивается работа [8] , в которой Кантор, по инициативе Вейерштрасса, использует понятие счетности в своем методе сгущения особенностей. В безмерном духовном напряжении, связанном с зарождением революционных идей работы [13], в особенности теории трансфинитных чисел, и с утверждением их вопреки сопротивлению современных исследователей, отягчающую роль сыграли две специфических трудности: борьба с проблемой континуума и усиление антагонизма с Кронеккером. О том и другом мы хорошо осведомлены благодаря изданным А. Шенфлисом письмам Кантора к Миттаг-Лефлеру * А. Шенфлис. Кризис в математическом творчестве Кантора. Acta Mathem., 50, 1–23 (1928). Ср. также Миттаг-Лефлер, ibid., стр. 25 и далее. от 1884 года, когда произошел решающий поворот в его жизни. Когда в начале 1884 года была завершена основополагающая работа [13], Кантор уже далеко продвинул открытое еще в [10] и подчеркнутое в [11] деление бесконечных множеств на два класca – счетные и эквивалентные линейному континууму; как при этом обнаружилось, ко второму классу относятся, прежде всего, «совершенные множества». С другой стороны, также отправляясь от точечных множеств, он ввел трансфинитные порядковые числа второго числового класса (как символы порядка производных), конструируя их с помощью предельных процессов, подобных построению иррациональных чисел в виде фундаментальных рядов. Таким образом, казалось чрезвычайно вероятным, что второй числовой класс как раз имеет мощность континуума; и в самом деле, в шестой части работы [13] Кантор объявляет, что с помощью своих предыдущих теорем он может это предположение доказать; это должно было увенчать все полученные им результаты. Однако, его настойчивые попытки провести такое доказательство, как в то время, так и позже, летом и осенью 1884 года, с привлечением все новых методов, оказались безуспешными * Тогда же, летом 1884 г. П. Таннери, предпринял попытку доказать гипотезу Кантора; рассуждения его содержат ошибку. ( Bull. Soc. Math. de France, 12, 90–96, 1884) ; в ноябре он даже отказывается от своего предположения − построив мнимое доказательство, что континууму вообще не соответствует в качестве мощности никакой алеф − но на следующий же день изменяет это мнение. За повторными безуспешными усилиями следует усталость, уныние, разочарование; осенью 1884 года, после кризиса в состоянии здоровья, о котором пойдет речь дальше, вдруг обнаруживается стремление вообще отойти от математики. Он хочет полностью оставить ее и намеривается даже просить у министерства разрешения перейти в своей преподавательской деятельности от математики к философии * В действительности Кантор время от времени вел философские семинары, например, занимался Лейбницем, с целью разъяснить свою теорию актуальной бесконечности посредством сравнения с его мыслями. Как он любил говорить при этом, в качестве ординарного профессора философского факультета он имел право читать лекции даже о санскрите . Но прежде всего он отдается в то время, с величайшей энергией и, очевидно, в связи с расстройством здоровья, попыткам доказать, что автором пьес Шекспира был Френсис Бекон * В письме Кантора к Миттаг-Лефлеру от 17 декабря 1884 г., где, по-видимому, впервые идет речь об этом предмете, говорится: «Френсис Бекон, он и только он мог быть автором этих шедевров; ибо один и тот же огненный дух встречаем мы, с одной стороны, в этих драмах, а с другой − в “Moral essays” («Опыты о морали») и в других трудах Бекона» . Он и в этом направлении проявил свойственные ему увлеченность и настойчивость, о чем свидетельствуют, между прочим, опубликованные им по этому вопросу сочинения. * Resurrectio Divi Quirini Francisci Baconi Baronis de Verulam Vicecomitis Sancti Albani CCLXX annis post obitum eius IX die apriles anni MDCXXVI. (Pro manuscripto.) Cura et impersis G(eorgii) C(antoris). Halis Saxonum MDCCCXCVI. [Воскресение Френсиса Бекона, барона веруламского, виконта Сент-Албанского, после смерти его 9 апреля 1626 года. (о рукописи). Издано усердием и за счет Г(еорга) К(антора). Галле в Саксонии, 1986(C предисловием на английском языке за подписью: “Dr. phil. George Cantor, Mathematicus” «Д-р философии Георг Кантор, математик». На это решение оставить математику (впрочем, неоднократно нарушенное уже в течение 1885 года чисто математическими исследованиями), вероятно, еще сильнее неудачи с проблемой континуума повлияло разочарование, вызванное у Кантора отношением к его предыдущим трудам в математическом и философском мире. Достигший сорокалетнего возраста исследователь, выступавший в течение более десяти лет со своими новыми идеями перед научной общественностью, естественно, должен был стремиться к признанию его труда коллегами и к научному влиянию на младших из них. Но этого он был почти лишен. Лишь в очень ограниченной мере могла способствовать осуществлению его желаний дружба с Миттаг-Лефлером, длившаяся до конца и настолько прочная, что смогла противостоять известным (отчасти действительным, отчасти же лишь воображаемым) расхождениям во взглядах в 1884−85 годах. Когда Миттаг-Лефлер в 1881 г. приступил к преподаванию во вновь созданном Стокгольмском университете и сразу же основал журнал Acta Mathematica, он не только пригласил Кантора участвовать своими публикациями в новом журнале, но и позаботился перевести на французский язык работы [4], [5], [9], [10] и, что особенно важно, большую часть работы [13] (части 1–5), опубликовав их во 2-м томе Acta. Уже сама по себе эта поддержка со стороны уважаемого ученого, пользовавшегося значительным влиянием ввиду его отношений с Вейерштрассом и с кругом парижских математиков, была в моральном отношении важна для Кантора в то время, когда для него был закрыт «Журнал Крелля» и господствовавшее влияние берлинских (а, по-видимому, и геттингенских) математиков было ему прямо враждебно. Не менее очевидно было и собственно научное воздействие дружбы с Миттаг-Лефлером; кроме начавшихся в 1883 году, в некотором смысле параллельных публикациям Кантора работ Бендиксона и Фрагмена о точечных множествах, в томах Acta. за 1883–84 годы появился целый ряд весомых применений теоретико-множественных понятий и результатов к задачам теории функций и геометрии, авторами которых были как сам Миттаг-Лефлер, так и восходившие тогда светила − Пуанкаре и Шеффер. Кантор не заметил сначала работы Пуанкаре, в которой теория точечных множеств была привлечена к исследованию строения области существования автоморфных функций; но при поездке в Париж весной 1881 г. он имел случай убедиться, что Пуанкаре знает и ценит его работы * По свидетельству Миттаг-Лефлера (Acta Math.,50, стр. 26, 1928), фундаментальные работы [13] были переведены для Acta на французский язык Пуанкаре . Бóльшие надежды возлагал он на влияние статьи Миттаг-Лефлера, которая должна была продемонстрировать силу и значение идей Кантора в области вейерштрассовой теории функций, стоявшей тогда в центре внимания, − в ней изучался вопрос о возможности построения аналитических функций с надлежащим образом заданными особыми точками. Тем глубже было его огорчение, когда обнаружилось, что ссылка на Кантора, напротив, во многом повредила приему, оказанному этой работе, особенно в результате сильного также и в Париже воздействия позиции Кронеккера. Столь же нерешительно, как математики, отнеслись к достижениям Кантора и философы; первое подробное сочувственное изложение, где содержатся также ссылки на предшествующие неосновательные оценки Кантора со стороны философов (Баллауф, Вундт * По поводу возражений Вундта, а также школы Гербарта (ср. Ztschr. Exacte Philos., 12) высказывается и сам Кантор в заключении статьи “Uber die verschiedenen Standpunkte in Bezug auf des aktuelle Unendliche” («О различных точках зрения на актуальную бесконечность), а также в “Mitteilungen zur Lehre vom Transfinften” («К учению о трансфинитном»); в последней речь идет также о рецензии Баллауфа , Лаас, Г. Коген), принадлежит Б. Л. Керри * «Исследования Георга Кантора о многообразиях», Vierteljahresschrift f. Wiss. Philos., 9, 191–232 (1885) . Завершается оно характерным суждением, согласно которому философия, «прежде рассматривавшая учение о непрерывном в его отношении к эвентуально составляющему его дискретному как свое самое неотъемлемое достояние», по-видимому, в исследованиях о многообразиях «породила из себя еще одну новую дисциплину», с которой материнская наука должна поддерживать знакомство, не ущемляя, однако, независимого существования. В это же время математик П. Таннери, сам активно занимавшийся идеями Кантора, издает предназначенное для философов и ориентированное в сторону философских вопросов введение в круг идей теории множеств * «Научное понятие бесконечного: Зенон Элейский и Георг Кантор», Revue philos. De la France et l’Étranger, 20, 385–410 (1885) , по-видимому, не замеченное Кантором. Но, конечно, сильнее всего задело Кантора отрицательное отношение не столько философов, сколько подавляющего большинства его коллег по специальности, и в особенности позиция Кронеккера. В этом, безусловно, главная причина кризиса 1884 г. Примерно до 1880 г. внешние отношения между Кронеккером и Кантором, кажется, оставались хорошими, несмотря на отрицательную с самого начала позицию, занятую Кронеккером по отношению к теоретико-множественным интересам своего бывшего ученика. Так обстояло дело, например, еще при посещении Кронеккера Кантором осенью 1879 г. Но уже написанная в 1882 г. часть 5 работы [13] содержит два примечательных места, где он высказывается против всевластия натуральных чисел и за нестесняемую свободу математического творчества; оба они недвусмысленно направлены против Кронеккера. Вся сила его неприязни против Кронеккера, влияние которого выходило далеко за пределы Германии, видна из его писем Миттаг-Лефлеру за 1884 год (в числе 52!), где это чувство проявляется с не сдерживаемой остротой. К его гневу примешивается также опасение, что предназначенная к опубликованию в Acta Mathematica (но в действительности не появившаяся там) статья Кронеккера может не только нанести ему дальнейший вред в глазах публики, но и отдалить его от верного друга, так как это изложение научных взглядов Кронеккера должно было, в частности, показать, «что результаты современной теории функций и теории множеств лишены всякого реального значения». В самом деле, Кронеккер смог оказать тогда враждебное Кантору влияние на Эрмита и, кажется, также на Вейерштрасса, занимавших в то время, наряду с ним, ведущее место в математическом мире. Впрочем, это длилось недолго; более того, оба они − вопреки относящимся к Эрмиту высказываниям Пуанкаре на римском Международном математическом конгрессе 1908 г. − вскоре стали искренними друзьями Кантора и поклонниками его трудов * Ср. письма Кантора У. Г. Юнгу от 1908 г. (см. Proc. Lond. Math. Soc. (2), 24, стр. 422 и далее, 1926) и Джордену от 1905 г. (см. Г. Кантор, Работы по основаниям теории трансфинитных чисел. Перевод введение и примечание Филиппа Э. В. Джордена, Чикаго и Лондон, 1915, стр. 48 . Но весной 1884 г. у Кантора произошел психический кризис; конечно, нельзя считать единственной причиной его описанный выше конфликт, безусловно, обостривший и, может быть, непосредственно вызвавший его. Это психическое заболевание, проявления которого время от времени повторялись до его смерти, неоднократно вынуждало его к пребыванию в клинике. Ближайшим последствием кризиса была депрессия, принизившая значение его работ в его собственных глазах, усилившая у него чувство вины за возникшие раздоры и побудившая его просить у Кронеккера извинения. Этот акт раскаяния, исполненный письменно и устно, привел, правда, к внешне удовлетворительным отношениям между обоими учеными, но ничего не изменил в диаметральной противоположности их взглядов и в постоянстве, с которым Кронеккер до самой смерти активно противодействовал идеям Кантора. Страница 2 из 5 Все страницы < Предыдущая Следующая > |
Комментарии
Ответить | Ответить с цитатой | Цитировать
Жаль, опущен перечень литературы по сноскам, а так приходится догадываться о работе [17].
Всё таки тезис: "В математике искусство постановки вопросов важнее искусства их решения", - был трудным и для Кантора.
Ответить | Ответить с цитатой | Цитировать